
If a region is conformally equivalent to the unit disc, then the region is simply connect 
proper subspace of the complex plane. Astonishingly, the converse holds as well.

We need two technical result at hands: Ascoli theorem (complex version) and injective 
sequence lemma. To describe our first result, we view region as a limit of compact subsets

As a consequence, we can describe the behavior of a family of functions on an 
exhausted region by its behavior on all compact subsets
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Notice that we can deform arbitrary region to locate at the center of the plane.

Now we spread this result onto the whole region:

If a sequence of injective holomorphic functions converges uniformly to a holomorphic 
function then it is either injective or constant. 
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The maximal element will automatically becomes surjective.

We shall pick the desired functions whose derivative at origin takes the supremum thus 
automatically becomes conformal equivalence from a bunch candidates. 
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